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Chapter 1  Crystal Structures 

Many of the properties and applications of crystalline inorganic materials 
revolve around a small number of structure types 
→ We must first consider some basic concepts of crystallography for 
structure description.  
 

1.1 Unit cells and crystal systems 

 
Crystal: regular arrangements of atoms in three dimensions 
 
represented by a repeating unit or motif 
 
                       unit cell 
Unit cell: the smallest repeating unit showing the full symmetry of the 

crystal structure. 
 
first consider 2D, Fig.1.1(a); possible repeat units (b)(e) 
               NaCl                 

Adjacent squares share edges and corners 
  The choice of origin of the repeat unit: 

1. personal taste 
2. NaCl is usually chosen as (b) or (c), rather than (d) 

                     
                    easier to draw and visualize,  

contain atoms at special positions, 
                    corners, edge centers,… 

3. symmetry is evident 
 

Comparing (e) with (b) and (c) 
a. the units in (e) are half the size of those in (b) and (c) 

   ∴ (e) is preferred in 2D 

b. In 3D, however, (c) is preferred because it shows the cubic 
symmetry. 
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(f) shows examples of what is not a repeat unit 
a. (top) the squares are identical, but it is not permissible to 

isolate unit cells 
 b. (bottom) it contains units that are not identical (1 and 2)  
 

Fig.1.2 shows the unit cell of NaCl in 3D: 
a. Na: corner and face center positions 
b. Cl : edge centers and body centers 
c. the unit cell is cubic 

  a = b = c in length for the three edges 
  α = β = γ =90º for the three angles 

         between b&c 

                   between a&c 

 

    Table1.1 and Fig 1.3:  Seven Crystal Systems 
 
                                 7 possible shapes 
 
                                 governed by the presence or 

absence of symmetry 
 
 

1.2  Symmetry 

Rotation axis, n 
 
Fig.1.4(a) Silicate tetrahedron 
   the vertical SiO bond as the axis  

a. every 120º the tetrahedron finds itself in an identical position. 

b. different identical positions are possible → possess symmetry 

c. the axis is a rotation axis 
this is an example of a symmetry element; 
the process of rotation is a symmetry operation. 
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Table1.2 shows different symmetry elements 
 

Fig.1.4 (a) SiO4 
   A rotation axis, n, and by 360/n degrees gives an identical 

orientation; the operation is repeated n times before the original 
configuration is regained. 

   ∴ n = 3, the axis is a threefold rotation axis. 

     SiO4 tetrahedron possesses four threefold rotation axes. 
 
Fig.1.4 (b) SiO4 

    twofold rotation axes, passing through the central Si and bisect 
the OSiO bonds; SiO4 tetrahedron possesses three twofold 
axes. 

 
Rotational symmetry can be n = 2, 3, 4 and 6 
      n = 5, 7 are never observed 
      a molecule can have pentagonal symmetry (n = 5), but their 

fivefold symmetry cannot be exhibited by the crystal as a 
whole (Fig.1.4(c)). 

 
Fig.1.4(d) shows sixfold rotation axes. 
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Mirror plane, m 

Two halves of , for instance, a molecule can be interconverted by 
carrying out the imaginary process of reflection across the mirror 
plane. The SiO4 tetrahedron possesses six mirror planes 
 
Fig.1.5(a): silicon and oxygens 1 and 2 lie on the mirror plane; 3,4 are 
interchanged on reflection. A second mirror plane lies in the plane of 
the paper; Si and 3,4 lie on the mirror but 2, in front of the mirror, is 
the image of 1, behind the mirror.                   
 

Center of symmetry, ī 
The center of symmetry is a point and an identical arrangement can be 
found on the other side. 
 
An AlO6 octahedron has a center of symmetry located on the Al atom. 
(Fig.1.5 (b), Al as the center, oxygen 2 can be obtained from 1 by 

extending an equal distance on the other side.) 
SiO4 dose not have a center of symmetry. 
 

Inversion axis,  

a symmetry operation involves rotation and inversion through the 

center; Fig.1.5(c), Oxygens 2 and 3 are related by a  (fourfold 

inversion) axis, i.e. 2 is rotated by 360/4 = 90º (to position 2’) and 
then taken by inversion through the center to position 3. 

ī is simply equivalent to the center of symmetry. 

 
The two fold inversion axis is the same a mirror plane perpendicular 
to that axis. 
 

Point Symmetry:  

 the symmetry elements discussed so far  
 at least one point stays unchanged during symmetry operation 
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 finite-sized molecules can only possess point symmetry elements 
 

Space Symmetry:  

Crystals have extra symmetries, including translation steps 
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1.3 Symmetry and choice of unit cell 
Table1.1 the seven crystal systems 

 
Cubic  

Shape  essential symmetry elementsby which crystal 
system is defined. 

a＝b＝c               Four threefold axes  
α=β=γ= 90º            (run parallel to the cube diagonals) 
 
Fig.1.2 NaCl        additional symmetry elements 
Fig.1.6 (a)            three fourfold axes   Fig.1.6 (a) 
                     mirror planes       Fig.1.6 (b,c) 
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Shapes do not define the unit cells; they are a consequence of the 
presence of certain symmetry elements. 
 

Tetragonal 

                        Essential symmetry   

a＝b≠c                    single fourfold axis       

α＝β＝γ＝90º    

 a cube that is either squashed 
Fig.1.7 (a) CaC2           or elongated along one axis  

C≡C                ∴ all threefold axes and two of the fourfold  
carbide ion is              axes are lost 
cigar-shaped, c-axis the unique one       
 

 the choice of a tetragonal unit cell for NaCl  
(Fig.1.7 (b) (Fig.1.1 (e)) is rejected, even if 
the tetragonal has half the volume of the 
cube.   
(Cubic is always preferred) 

 

Trigonal 

                     Essential symmetry   
a＝b＝c                  single threefold axis  
α＝β＝γ≠900     

Fig.1.7(c) NaNO3
 

  a cube by stretching or compressing the  
cube along one of its body diagonals  

                      ∴ only one threefold axis parallel to this 
direction is retained, but others are 
destroyed   

It is possible to describe such a trigonal cell for NaCl withα＝β＝γ= 60º with Na 
at the corners and Cl in the body center. This is unacceptable because cubic NaCl has 
symmetry higher than trigonal. 

Hexagonal 

a＝b≠c      Essential symmetry 
α＝β＝90º, γ＝120º         one sixfold axis (discussed later, Fig.1.17) 
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Orthorhombic 

Essential symmetry 
a≠b≠c                   three mutually perpendicular  
α=  =γ＝90º,                    mirror planes  

or  
a shoebox                  three mutually perpendicular two fold 

axes     
the angles are 90º but the sides are of unequal length 
                       

Monoclinic 

Essential symmetry 
a≠b≠c                     a mirror plane  
α＝γ＝90º, β≠90º                       or/and 
                            a twofold axis 
 

  derived from orthorhombic shoebox by   
partially shearing the top face relative to 
the bottom face and in a direction parallel 
to one of the box edges.  

∴  most of the symmetry is lost 

One of the monoclinic unit cell axes is unique since it is perpendicular to the other 

two. The unique axis is b. 

 

Triclinic 

Essential symmetry 

a≠b≠c                     none 

α≠β≠γ≠900     
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1.4  Lattice, Bravais lattice 

It is useful to represent the manner of repetition of atoms, ions or 
molecules in a crystal by an array of points: 
 
        the array   ≡  a lattice 
        the points  ≡  lattice points 
 

NaCl structure shown in Fig.1.8(a) is represented by an array of 
points in Fig.1.8(b) 
 
    each point represents one Na and one Cl  
    but the location of lattice point (at Na, Cl or in between) is 

irrelevant. A unit cell can have lattice points at some specific 
positions  Lattice Type. 

 
   Units cell: constructed by linking the lattice points 
 
   Lattice type 
 
   Primitive, P: lattice points only at the corners, Fig.1.8(b)  
                                           B 

   Centered－ additional lattice points at the center, Fig.1.8(b)A 

              
several types of centered lattice 

 
           F: face centered lattice, additional points in each face 
           C− extra lattice points are on the ab faces 
Fig.1.9     A−extra lattice points are on the bc faces 
                side centered lattice 
           I: body centered lattice, an extra point at the body center  
Example: a. Cu metal, a face centered cubic structure, fcc 
         b. -iron (Fe), a body centered cubic structure, bcc 
         c. CsCl, Cs at corners and Cl at the body center, but it is 

primitive. For a body centered lattice, the atoms located at 
the corners must be identical to those at the body center. 
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Combination of Crystal System and Lattice Type 
  → fourteen Bravais lattices are possible 
       

Table1.1 Crystal system (column 1); Lattice type (column 4) 
    e.g. primitive monoclinic, Ccentered monoclinic, primitive triclinic 
     
    the trigonal lattice can be represented by a primitive rhombohedral 

lattice with a＝b＝c , α＝β＝γ≠90º (Table 1.1 trigonal (b)), or a 

hexagonal lattice (stacking in ABCABC… sequence) of 3 lattice 
sites per cell (Hammond Fig. 3.3b, Table 1.1 trigonal (a), also belong to the 

hexagonal system)  
 
  Only 14 Bravais lattice are possible, and the reasons for absence  

(a) violate symmetry requirements,  
e.g. Ccenter lattice cannot be cubic (need threefold axes)  

    (b) can be represented by a smaller, alternative cell 
      e.g. a face centered tetragonal cell can be redrawn as a body 

centered tetragonal cell (the volume is halved, but the symmetry 
remains the same). 

 

 
Fig. 3.3a, hexagonal lattice: they are stacked directly one on top of the other. 

Fig. 3.3b, rhombohedral lattice: the next two layers of point lie above the triangular 

“hollow” or interstices of the layer below, giving a three layer repeat. 
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1.5  Lattice planes and Miller indices 

Lattice planes, a concept introduced with Bragg’s law of diffraction, 
are defined from shape and dimensions of the unit cell. 
 
Lattice planes are imaginary and provide a reference grid to which the 

atoms in the crystal structure may be referred. 
 
Sometimes, a given set of lattice planes coincides with layers of atoms, 

but not usually. 
 
    Fig.1.10(a) 

 2D array of lattice points 
 different sets of rows and for each there is a characteristic    

perpendicular distance, d , between adjacent rows.  
 in 3D, rows → lattice planes interplanar d-spacing, d. The 

Bragg diffraction angle, , for each set is related to the d-spacing. 
 

Lattice planes are labeled by assigning three numbers known as Miller 
indices to each set. Fig.1.10 (b) 

 
Fig.1.10 (b) shows two planes are parallel and pass obliquely 
through the unit cell. A third plane in this set must, by definition, 
pass through the origin O. (many more parallel planes in this set) 
 
To assign Miller indices to a set of planes, there are three stages: 
1. Identify the plane which is adjacent to the one that passes through  

the origin  
2. Find the interaction of this plane on the three axes:  

cuts x-axis at  , y-axis at b, z-axis at . 

i.e. ( , 1, 3
1 ) the fractional intersections 

3. Take reciprocals of these fractions →(213) 

three integers, (213) are the Miller indices of the plane and all 
other planes that are parallel to it and are separated from adjacent 
planes by the same d-spacing. 
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Some examples for determining the Miller indices 
 
Fig. 1.11(a) 
 The shaded plane cuts x,y,z at 1a, ∞b, 1c 
 ∴ Miller indices  

 (101) 
 
 
Fig. 1.11(b) 
 Planes 1 and 2 comprise opposite faces of the unit cell 
 Plane 1 passes through the origin (cannot be used to determine indices) 
 Plane 2 has intercepts at 1a, ∞b, ∞c 

 (100) as the Miller indices 
 
Fig. 1.11(c)  
 There are twice as many planes as in Fig. 1.11(b) 
 Plane 2 is the one that is closest to the origin 
Intercepts at 1/2, ∞, ∞ 
(200) as the Miller index for all the planes, the (200) set. 
 
Fig. 1.11 (d) 
 
 
 
 
If extra planes are interleaved between adjacent (100) planes then all 
planes labeled as (200); likewise for (300). 
 
 General symbol for Miller indices in (hkl) 
  Symbol { } is used to indicate sets of planes that are equivalent,  
  e.g. the sets (100), (010) and (001) are equivalent in cubic crystals 

 represents collectively as {100} 
 

The plane parallel to b 

Plane is parallel to the axis with ”0” 

(200) (100)  (300) 
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High-resolution TEM image of a single TiO2 nanorod obtained from 

hydrothermal treatment (at 175°C for 48 h) of a nanotube suspension with 

pH = 5.6 and the corresponding selected-area electron diffraction pattern 

(inset). 
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Figure 1. Powder XRD patterns of the titanate specimens obtained from 

the solid-state synthesis (designated as Sodium-Titanate), from the 

hydrothermal treatment on Sodium-Titanate (designated as 

Sodium-Titanate-H), and from the acid treatment on Sodium-Titanate-H 

to pH values of 6 and 1.7 (designated as Sodium-Titanate-HA and NT, 

respectively). The diffraction peaks are indexed according to the 

orthorhombic-phase structure shown in Figures 4a and b for 

Sodium-Titanate and Sodium-Titanate-HA, respectively. 
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Figure 2  TEM images of the Sodium-Titanate specimen obtained 

from the solid-state synthesis (a) and the selected area electron diffraction 

patterns with their corresponding HRTEM images showing the lattice 

fringes directing along the zone axis [ 112  ] (b) and the axis [ 111 ] (c).
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Figure 3  Observed (dot) and Rietveld-refinement simulated (line) 

XRD profiles for the Sodium-Titanate and Sodium-Titanate-HA 

specimens. The difference between the observed and simulated data is 

shown at the bottom of the figures. The reliability factors are Rwp = 0.129 

and Rp = 0.085 for Sodium-Titanate and Rwp = 0.123 and Rp = 0.087 for 

Sodium-Titanate-HA. 
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Figure 4  Proposed crystal structures of NaxTi2-x/4�x/4O4 for the 

Sodium-Titanate specimen in orthorhombic C-base-centered symmetry (a) 

and Nax+y-zHzTi2-x/4�x/4O4(OH)y·nH2O for the Sodium-Titanate-HA 

specimen in orthorhombic body-centered symmetry (b). In both models 

the interlayer sites are shown in a fully occupied situation. Because of the 

small scattering factor for H atoms, OH and H2O are not distinguished in 

the structural simulation. The change from the C-base-centered symmetry 

to the body-centered symmetry can be caused by a slip of the middle 

layer by c0/2 along the c axis against the top and bottom layers. 
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Powder X-ray diffraction patterns of the ED25 and ED65 Cu2O powders 

(upper section) and the films (lower section). The standard diffraction 

pattern of Cu2O from JCPDS is provided at the middle of this figure. 
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1.6 Indices of directions 

  
 Directions in crystals and lattices are labeled by first drawing a line 
that passes through the origin and parallel the direction of concern. 
 

 [ 2
1

2
1 0], [110], [330] all describe the same direction, but 

conventionally [110] is used. [xyz] are arranged to the set of smallest 
possible integers. 
 
 Cubic [100], [010], [001] are equivalent and can be represented 
collectively as <100> 
 
 For cubic systems, [hkl] directions is always perpendicular to the (hkl) 
plane of the same indices, but this is only sometimes true in non-cubic 
systems. 
 
 Fig. 1.11 (e), [210], [ 3 23] 
[210]:  taking the origin at the bottom left front corner 
  taking the intersection point: 1, 0.5, 0, to define the direction 
 
[ 3 23]:  taking the origin at the bottom right front corner 
  taking the intersection point: 1, 0.67, 1, to define the direction 
  the bar sign indicates a negative direction 
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1.7 d-spacing formulas 

 
 For a cubic unit cell, 
  The (100) planes have a d-spacing of a  
  The (200) planes, d = a/2 
 

 For orthorhombic crystals (α=β=γ= 90º) 

                
             
 
             
  for (hkl) planes this eq. can be used for: 

   tetragonal:  a = b≠c 

   cubic:  a = b= c 
 
 For monoclinic and triclinic crystals 
  See Appendix 1 
 
 

1.8 Crystal densities and unit cell contents 

 
 

 NunitformulaofVolume

FW

volumemolar

FW

Volume

Mass
D




 
 
 N = Avogadro’s number 
  

Z = content of formula unit in a unit cell 
      = unit cell content 
 
 V = unit cell volume 
   = volume of one formula unit   Z 
 
 

2

2

2

2

2

2

2

1

c

l

b

k

a

h

d lhk

  

Formula 
weight 
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On the basis of unit cell 

  V

ZFW

NV

ZFW
D

66.1






 

 
 
Uses of the above equation: 
a. to check that a given set of crystal data is consistent and that an 

erroneous formula weight has not been assumed. 
b. to determine any of the four variables if the other three are known. 
c. by comparison of Dobs and Dcalc, information may be obtained on the 

presence of crystal defects such as vacancies or interstitials, the 
mechanisms of solid solution formation and the porosity of ceramic 
pieces. 

 
Z value determination 

Fig. 1.9(c), α-Fe, body-centered cubic (bcc) 

The corner atoms: 8, each is shared between eight neighboring unit cells 
The body center atom: 1, entirely inside the unit cell 
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 Fig. 1.9(a), face-centered cubic (fcc), Cu 
  The corner atoms: 8 
  The face center atoms: 6, each shared between two unit cells 
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 Fig. 1.2, NaCl, fcc 

  Assuming the origin at Na → same as Cu   

∴unit cell contains 4 Na 

  Cl: edge center positions: 12, each shared between four  

body center: 1 

  ∴unit cell contains 4 Cl = (12  4
1 ) + 1 

  Z = 4 NaCl 
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